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Fuzzy Sets in Macroscopic Quantum Systems
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We express quantum properties by quantum fuzzy set functions, and these by
generalized transition probabilities. The property of ª being excitedº is fuzzy for
one two-level atoms, but shown to be crisp for infinitely many ones.

Fuzzy set theory Zadeh (1965) introduces a new type of vague properties.

The interpretational questions have mostly been discussed in relationship to

classical probability theory (Kosko, 1992; McNeill and Freiberger, 1994, and
references therein). Our intention here is to apply some notions of fuzzy

set theory to macroscopic quantum systems, where classical and quantum

mechanical vagueness is combined. These systems offer interesting aspects

for foundational investigations as well as for the physical realization of control

systems, where fuzzy set theory has been especially useful (McNeill and

Freiberger, 1994). For the following discussion we use the frame of a C*-
algebraic statistical theory, which is typified by a unital C*-algebra ! (Bratteli

and Robinson, 1979). The w*-compact, convex set of its states given by all

positive, normalized linear functionals is denoted by 6(!) [ 6. The statistical

contents are constituted by the expectation values ^ r ; A & , r P 6(!), A P
!, where for formal convenience we drop the restriction to the self-adjoint

elements A P !sa.
Since the set of projections in ! may be too small, we consider the

universal enveloping von Neumann algebra }(!) > !** (which is as a

Banach space isomorphic to the bidual of !) and its projection lattice

3(}(!)) [ 3(!). It is well known (Takesaki, 1979) that 3(!) is a complete

orthomodular lattice, that is, a well-behaved quantum logic in the sense of
J. von Neumann. In particular, the (quantum) negation P ’ 5 1 2 P, P P
3(!), has a concise, algebraic formulation in the projector language.
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Nevertheless, it has interpretational advantages to employ a version of

this proposition lattice which is more directly related to the original C*-

algebraic notions, here to its state space 6. Let us, therefore, recall that
the mapping

3(!) { P j EP : 5 { r P 6; ^ r ; P & 5 1} # 6 (1)

is a lattice isomorphism of 3(!) onto % (6), the set of all norm-closed faces

in 6, where in the latter lattice the partial ordering is given by the inclusion.

Via E ’
P 5 EP

’ the negation is carried over to %(6), but has for noncommutative

! no direct formulation in the state language. The advantage to using %(6)

lies, however, in considering a property E as the set of those systemic states
in which E is completely actualized. This conforms with the traditional

definition of a ª propertyº as the set of objects which have it. In (1) the

content of the function

x P: 6 { 6 j x P( r ) 5 ^ r ; P & P [0, 1] (2)

is only partially used. The relationship between %(6) and the set of functions

^(6) : 5 { x E P [0, 1]6; E P %(6), x E( r ) 5 ^ r ; PE & } (3)

has been investigated in Maczynsky (1973, 1974). The functions x , x 8 in

[0,1]s have a natural partial ordering

x # x 8 if x ( r ) # x 8( r ), " r P 6 (4)

and complement

x ’ ( r ) : 5 1 2 x ( r ), " r P 6 (5)

Since ^(6) equipped with # and ’ satisfies the conditions of the ª orthogonal-

ity postulate,º is ª complete,º and ª quite full,º we may announce the following

application of Maczynsky, (1974):

Proposition 1. ^(6) is a complete orthomodular lattice, which by the

mapping

^(6) { x j E x 5 { r P 6; x ( r ) 5 1} (6)

is ortholattice isomorphic to %(6).

According to Pykacz (1992), the version ^(6) of our (quantum) logics

should be considered from the point of view of fuzzy set theory, where 6
plays the role of the universe of discourse. This makes indeed the fuzziness

of quantum mechanics to appear in a new light. Since (4) and (5) are the

original Zadeh connections (Zadeh, 1965), they render the set of all fuzzy

membership functions [0, 1]6 to a complete distributive lattice in which the
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De Morgan laws are valid. The law of the excluded middle is, however, not

true, and thus [0, 1]6 is not a Boolean algebra. The restriction to ^(6) may

change the type of fuzzy logic completely. If ! is commutative, then ^(6)
is Boolean. If ! is non-abelian, then ^(6) exhibits quantum features, which

in general are mixed with classical ones. The point is that in sublattices of

[0,1]6 the lattice operations ª meetº and ª joinº are no longer directly available

via the membership functions in the manner of Zadeh (1965). An interesting

observation by Pykacz (1992) is that for orthogonal propositions the Giles

connectivities (Giles, 1976) for membership functions are applicable in the
frame of Maczynsky (1974) (which covers the C*-algebraic theory).

Now we observe that our discussion in connection with Proposition 1

supports not only Kosko’ s statement that classical probability theory is a

specialization of fuzzy set theory, but leads to the same conclusions for

quantum probability. In fact, any generalized statistical theory [over a projec-

tive convex set 6 as state space (Alfsen and Shultz, 1976)] produces via the
expectation functions a sublattice of [0, 1]6.

We want to supplement the extensive discussion on the relationship

between fuzzy sets and statistics by demonstrating that the membership

functions may be expressed in terms of ª transition probabilitiesº which in

general are not probabilities in the usual sense. The general notion of a
transition probability has been introduced by Cantoni (1975) in the frame of

Mackey systems and has been axiomatically founded in a clear and appealing

manner in Gudder (1978). For the C*-algebraic theory its equivalence to

Uhlmann’ s transition probability (Uhlmann, 1976), which we use in the

sequel, has been shown in Araki and Raggio (1982).

Definition 2 (Uhlmann, 1976). For two states w , c P 6 their (a priori)
transition probability is defined as

T!( w , c ) : 5 sup
P , F P

, C P
| ( F P | C P ) | 2 (7)

where the supremum runs over all representations P of !, in which w , c both

have vector representatives F P and C P , which are also varied in (7). Here

( ? | ? ) denotes the scalar product in the representation Hilbert space of P .

In (7) the analogy to the transition probability of traditional Hilbert

space quantum mechanics for two pure states is suggestive. Observe, however,

that here the states w , c may be mixed, even classically mixed (nonfactorial),

and that for commutative ! we arrive at the classical transition measure of
Kakutani (1948).

For calculations it is advantageous to avoid the supremum in (7). In

Gerisch et al. (1996) it is shown that for given P (in which w , c both have

vector representatives) and given F P there exists a distinguished C P with
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T!( w , c ) 5 | ( F P | C P ) | 2 (8)

Now we come to the decisive result.

Proposition 3. For any membership functions x E P ^(6) it holds that

x E( r ) 5 sup
c P E

T!( r , c ) (9)

Proof. The proof uses Hilbert space geometry in the universal representa-

tion space of ! (Rieckers and Zanzinger, 1996). n

If in (9) c is pure and E equal to the singleton face { c }, then the

membership function x E( r ) coincides with the transition probability. Also,

for the set of factorial states 6 f the relation (9) has a clarifying consequence
for classical properties.

Proposition 4. If the property E P %(6) is classical (split face, folium),

then x E | sf is crisp (has only the values 0 and 1). If E # E(6f), then the reverse

implication holds as well. Here E (6f) denotes the smallest folium containing

all factor states.

Proof. The proof is easy with results of Gerisch et al. (1996). n

For quasi-local C*-algebras there exists a net L j ! L , L P I, of local

algebras such that ! 5 ø IA
| ? |
L . These algebras give rise to continuously

varying classical properties. Let us, for example, consider a macroscopic

amount of two-level atoms. Then I consists of the finite subsets L of N, the

numbering of the atoms. For the i th atoms we have the C*-algebraic theory

!i > M2, 6 > 71
1 (C2) > @3 (10)

that is, the algebra of 2 3 2 matrices with its state space affine isomorphic

to the ball in R3 with radius 1/2. For every
-

x P @3 there is a unique density

operator r -
x P 71

+ (C2) with tr[oo
-

s ] 5
-

x ,, where
-

s is the vector of the three
Pauli matrices. The faces of @3 are the sets O¤, the singletons {

-
x}, where

|
-

x | 5 1/2, and @3. The corresponding membership functions

x P ^(@3) are the constant zero, the unique affine functions x -
x : @3 j R,

with x -
x (

-
x ) 5 1, and x 1

-
x ( 2

-
x ) 5 0, and the constant unity, respectively. If

-
x ,

-
y P @3 with |

-
x | 5 |

-
y | 5 1/2, and

-
x Þ

-
y , then x -

x Ù x -
y 5 0, since no

other element in ^(@3) is pointwise smaller than
-

x and than
-

y .
According to Dicke (1954), the state properties for systems of two-level

atoms, which are relevant for the radiated photon states, are the cooperation

number s P [0, 1] and the excitation number g P [0, 1]. For one two-level

atom they are defined by
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s 5 2|
-

x |, g 5 x3 1
1

2
,

-
x P @3 (11)

The full excitation property is given by the singleton { (0, 0, 1/2) }. But also

the other states r -
x ,

-
x P @3, all have a partial excitation, with the only

exception of (0, 0, 2 1/2). The membership function x -
x ,

-
x 5 (0, 0, 1/2), for

the property ª excitationº spreads over all of @3. If one prepares any state

x -
x ,

-
x Þ (0, 0, 2 1/2), one has a finite likelihood to find the atom excited.

Here ª likelihoodº is meant as a circumlocution of ª transition probabilityº

(Gudder, 1978).

To study a macroscopic (radiating) system of two-level atoms we choose

the C*-algebraic theory

! : 5 ^
N

!i, 6 5 6(!) (12)

that is, the infinite-atom limit. For every
-

x P @3 we form the set of states

E -
x 5 H w P 6; lim

L
^ w ; o

i P L

-
s / | L | & 5

-
x J (13)

where | L | is the cardinality of L , N.
E -

x is convex, norm-closed and stable against local perturbations. [Skip

a finite part in the sum of (13)!] Thus E -
x is a folium (Haag et al., 1970),

that is, a classical property in %(6). The restriction of x E
-

x to 6f is therefore

crisp. If one prepares an ensemble of lasers pumped to the excitation degree

g 5 g (
-

x ), each exemplar ª hasº this degree if it is in a factorial state. All
subsets of @3 are now (classical) properties (and not only the few previous
ones of one two-level atom).

The interaction with the photon field, as described in terms of a Dicke

model, transfers the cooperation and excitation properties to the outgoing

radiation states (Honegger and Rieckers, 1994). Their spatial distribution

depends on the wave functions for the eigenstates of the two-level atom.

Their overall intensity is proportional to

I (
-
x ) 5 F 1 s2 2

2

2 1 g 2
1

2 2
2

G (14)

The outgoing radiation is completely coherent if I (
-

x ) is given a sharp value

by the atomic states preparation. The control system ª atom plus radiationº
works mainly in terms of classical properties. This somewhat explains the

usefulness of the semiclassical approximation in laser physics. In the Joseph-

son microwave radiation the macroscopic phase dynamics is nonclassical

(Hofmann and Rieckers, 1996). In this case the nature of quantum fuzziness,
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integrated into an optoelectronic control system, may be studied on the

macroscopic scale.
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